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INTRODUCTION

The human superorganism is a collective term for our human bodies and the
microbes they host, mostly symbiotic but occasionally pathogenic. The super-

organism can be thought of as an interdependent ecosystem in which microbes

rely on the host for necessary sustenance in order to thrive and in turn provide
the human host with critical support functions such as immunomodulation.

Technological and computational advances in genome studies have enabled

the study of the human microbiome, which is an order of magnitude higher
in complexity compared with the human genome by itself. Much of the work

in this field has been accomplished since the Human Microbiome Project

started in 2007 by the National Institutes of Health. The first phase of the pro-
ject involved the basic characterizing of human microbial flora. The second

phase, called the Integrative Human Microbiome Project (iHMP), was started

in 2014 with the aim of studying the role of microbes in health and disease
states and is expected to lead to new discoveries in diagnosis, prognosis, and

treatment of a variety of human diseases [1].
TECHNOLOGICAL APPROACHES TO STUDYING THE GUT
MICROBIOME

DNA Approaches—What Is Present?

The complexity of the gut microbiome with its variety of species is challenging
to study. A culture-independent method of evaluation is critical, because many

of these organisms have never been cultured and it is unknown if novel growth

conditions are necessary to culture some [2].
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Initial studies in this space with bacteria involved targeted sequencing of spe-

cific regions such as 5S and 16S rRNA genes [3]. Though this method contrib-
uted to significant understanding of the microbiome, large-scale studies were

not possible until the advent of next-generation sequencing. Sequenced organ-

isms were grouped into operational taxonomic units and referred to as a single
bacterial species when the sequence similarity was 97% [4]. Although more

progress has been made in the study of bacteria than viruses and eukaryotic

microbes, considerable efforts are now being made to reduce this imbalance.
Viruses are primarily studied using shotgun sequencing and microarrays [5],

while eukaryotic organisms are studied using 18S rRNA and specific signature

sequences [6, 7].

RNA Approaches—What Is the Functional Pathway?

Apart from DNA-based studies, studies have also been done based on the

RNA of these organisms that are referred to as metatranscriptomics. It is esti-

mated that the microbiome expresses 100 times more genes than the human
host. The activity of the microbiome can be gauged by studying microbial

mRNA via sequencing. The main challenge in this space has been the

stability of the RNA, which is being addressed in novel methods to extract
and study it [8].
DIFFERENTIATION OF THE INTESTINAL MICROBIOME

Protein and Metabolite Approaches—Host Interaction
and Outcome

Metaproteomics is the study of the microbial proteome, which is expected to

give us a better understanding of how the gut microbiome interacts with the

host. The complexity of looking for multiple proteins enables researchers to
look at the functional characteristics and activity of the gut microbiome [9].

Another aspect of the gut microbiome is the study of the metabolites produced

by them. These small molecules have been shown to affect the physiology and
even modify the intestinal permeability of the host [10]. Both metaproteomics

andmetabolite studies of the gutmicrobiome are relatively new but hold prom-

ise to a better understanding of the human superorganism.

Within the superorganism, multiple microbiomes exist. An integumentary

microbiome interacts with the external environment; a salivary microbiome
can be either protective or destructive to oral health [11]; the intestinal micro-

biome is probably one of the most well known and studied of late; and the gen-

ital microbiome(s) [12], according to some animal studies and depending on
gender, might influence reproductive health and possibly even epigenetics of

offspring [13].
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The intestinal microbiome has gained notoriety recently due to its pivotal

role in human health. While current research into the intestinal microbiome
is merely scratching the surface of what humans can know about their micro-

scopic symbionts, much has already been elucidated in regard to this

complex relationship. The majority of research has occurred and still does
occur in animals; however, within the last decade, a significant number of

human trials, both in vivo and in vitro, have begun to fortify the knowledge

base and further explore the interplay of humans and microbes as they
relate to a variety of disease states, nutritional outcomes, and epigenetic

influences.
Broad Functions

The intestinal microbiome plays a number of roles in human health, from very

complex immunomodulatory functions to broad influence on nutritional sta-
tus. Microorganisms included in the intestinal microbiome include bacteria,

yeasts/fungi, and sometimes parasites. Bacteria can be classified into threemain

groups: commensal microorganisms (those acquired through exposure over
the life span and that help the host symbiotically), pathobionts (bacteria nor-

mally found in the intestinal tract, perform some beneficial functions, and

whose populations may also be opportunistic without adequate commensal
abundance), and pathogens (bacteria that cause disease and should not be

found in any normal intestinal microbial ecosystem).

The main functions of the intestinal microbiome consist of immunomodula-

tion, fiber fermentation, vitamin production, inflammatory response,

competitive inhibition of pathogens, and mucosal barrier fortification. Refer
to Table 1 for greater detail on each of these functions.
MICROBES AND IMMUNITY

T-cell differentiation is one of the primary immunomodulatory influences that

microbes have on the host’s immune system. T-cell differentiation is the act of

T helper cells (Th) becoming regulatory T cells, or Tregs, and preventing
unchecked Th17 immune responses. This occurs partly through the production

of the short-chain fatty acids (SCFAs), butyrate, propionate, and acetate, which

are the by-products of fiber fermentation by microbes in the colon. SCFAs bind
to G-protein-coupled receptors (GPCRs) on intestinal epithelial cells and influ-

ence the activation or differentiation of T cells, in a dose-dependent manner

[33]. SCFAs have differing mechanisms of influence on T-cell differentiation
depending on which SCFA is acting. Refer to Fig. 1 for an illustration of specific

mechanisms of SCFAs on T cells.



Table 1 Broad Functions of the Intestinal Microbiome

Major Function Central Concepts

Immunomodulation 1. Recognition of immune-stimulatory bacterial molecules and microbial metabolites
shapes the innate immune system [14]

2. The absence of sufficient microbial populations and their microbial metabolites has
downstream effects on immune function in the host [15]

Fiber fermentation 1. The human host’s survival depends on its microscopic intestinal symbionts, as they
depend on the host for both real estate and sustenance

2. The majority of microbiota are capable of fermenting fiber, simple carbohydrates, and
even complex carbohydrates

3. Microbial abundance relies on the abundance of metabolites produced by other
microbes [16], and the amount and types of fiber being fermented are just as relevant
as the consistency or frequency of intake [17]

Vitamin and nutrient
metabolism

1. The primary vitamins that intestinal microbes are known to liberate or synthesize are
the B vitamins (primarily B12, B6, and folate) and vitamin K2 [18, 19]

2. Humans lack B vitamin absorption mechanisms in the large bowel where the majority
of vitamins are synthesized [20, 21]. Animal studies, however, have shown that some
B vitamins may be absorbed into circulation [18]

3. Oxalate-degrading microbes in the intestinal tract affect the absorption of oxalate as
evidenced by urinary excretion rates and reduced incidence of renal calculi [22–24]

Inflammatory response 1. Intestinal microbiota modulate inflammatory responses, both locally in the intestines
and systemically outside the gastrointestinal tract [15, 25, 26]

2. If certain groups of commensal microorganisms are not acquired or cannot thrive, the
host lacks some degree of immune development [27–29]

Competitive inhibition of
pathogens

1. Commensals crowd out opportunistic and pathogenic microorganisms, preventing
them from adhering to luminal surfaces [30]

2. Commensal bacteria also perform interference inhibition by producing antimicrobial
peptides (AMPs) that limit or suppress the growth of pathobionts and pathogens [30]

Mucosal barrier fortification 1. Commensal microbes in the mucosa provide metabolites that fortify the epithelial
barrier through paracellular tight junction modulation, cellular cytoskeleton
fortification, and short-chain fatty acid (SCFA) production [31, 32]
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Homeostasis Is Maintained by Two-Way Communication
Between the Microbiota and Intestinal Immune System

All biological systems and organisms will seek to maintain or return to homeo-

stasis as a primary goal of survival. Maintenance of homeostasis relies upon del-
icate systems of communication between the host and the intestinal

microbiome. The mutual survival of both parties is the ultimate goal. The pri-

mary methods of communication occur through metabolites produced by the
microbes [34], antimicrobial peptides produced by the host and the microbes

[30], and lipopolysaccharide (LPS) or lipoteichoic acid (LTA) on the outer

membrane of microbes that allow the host immune system and other microbes
to easily recognize friend from foe [35].
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FIG. 1

Direct and indirect influence of short-chain fatty acids on immunomodulation through T-cell differentiation. From: Hoeppli RE, Wu D, Cook

L, Levings MK. The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Front Immunol 2015;6:61. https://

doi.org/10.3389/fimmu.2015.00061.
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Metabolites are able tomodulate host immune responses [15], influencemetab-

olism of nutrients [36], and even affect neurological processes such as appetite
andmood [37]. Thesemetabolites producedbymicrobes include SCFAs, such as

butyrate, propionate, andacetate; lactic acid; andvitamins, suchasK2andbiotin

[38]. SCFAs from fermentable carbohydrates specifically modulate immune
responses such as T-cell differentiation [33], promote satiety [39], and even

modulate host gene expression through histone deacetylase activity [40].

The aforementioned antimicrobial peptides (AMPs) produced by intestinal
microbes are capable of inhibiting the growth of pathobiont and pathogenic

microorganisms and are released by commensal organisms when invasive

microbes are sensed in their specific niche of the intestinal ecosystem. AMPs
such as defensins and cathelicidins are also produced by the host to shape

the intestinal microbiome of commensals and pathogens and are produced

by cells in the Peyer’s patches in response to changes in concentration and
location of both commensal and invasive microorganisms [41]. The main

https://doi.org/10.3389/fimmu.2015.00061
https://doi.org/10.3389/fimmu.2015.00061


66 CHAPTER 1.4: The Gut Microbiome
mechanism of action of AMPs against various bacterial species is their ability

to bind to bacterial membranes and disrupt them, leading to cell death [42].
Without adequate abundance of commensal microorganisms in the intestinal

mucosa, production of AMPs for competitive inhibition of opportunists and

pathogens is reduced.

One last category of metabolites that are produced by microorganisms and

participate in modulation of the microbiome and host immune response
is bacterial endotoxins: LPS produced by gram-negative bacteria and LTA

produced by gram-positive bacteria.

LPS is a potent bacterial endotoxin involved in inflammatory stimulation of the
host immune response by binding to toll-like receptors (TLRs) [35] in the local

luminal sites, where it causes an increase in intestinal tight junction permeabil-

ity, which allows relatively unchecked paracellular flow of substances from the
luminal side to systemic circulation [43]. If LPS translocates across an impaired

intestinal barrier [44], it has been linked to the development of the inflamma-
tory precursors to metabolic syndrome, obesity, and type 2 diabetes [45];

propagation of inflammatory conditions such as osteoarthritis [46] and even

neurological symptoms in vivo in mice and in vitro human studies [47, 48];
and, in severe cases of impaired immune function, septic shock [35].

LTA has a very similar mechanism of action in binding to TLRs, which initiate

inflammatory responses from the host. Once it has bound to its ligand, the
same types of inflammatory cytokine responses result from the host [35, 49].
MICROBIAL DIVERSITY

The key to a healthy intestinal microbiome in humans is diversity [50]. Taxa of

microbiota rely on each other for sustenance and defense of their niches. With
the loss of abundance of one group, others also decline. Thus, the symbiotic

nature of the microbiome is not only as it relates to the host and microbes

but also as microbes relate to one another.

The concept of diversity of the intestinal microbiome can be summarized as

follows: the greater the number of species, the greater the entire system is at
adapting and surviving. Low diversity is correlated with a number of chronic

diseases including irritable bowel syndrome (IBS) [51], inflammatory bowel

disease (IBD) [50], colorectal cancer [52], celiac disease [53], obesity [54],
and even autism [55]. While human studies are merely beginning to elucidate

cause-and-effect relationships between alterations in the intestinal microbiome

and host disease, some have already shown that these microbial alterations, or
dysbiosis, are at least not the result of the disease, but more likely to have been

present before disease onset and, therefore, involved in its progression or
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exacerbation [56–58]. While long-term human studies are still pending, animal

studies have shown so far that over four generations of nutritional changes that
affect microbiome diversity, the low diversity of the intestinal microbiome

becomes permanent in the host [59].
Keystone Species

Exposure to a variety of microbes throughout the earliest years of life is one of
the critical components of the microbiota’s development and maintenance.

The concept of keystone species refers to those species that, in humans, are

considered important, if not critical, to balanced immune responses, intercon-
nected interactions with other taxa, proper homeostasis of the intestinal tract,

and the host’s long-term health. Taxa that have been identified as keystone

groups include Lactobacillus, Bifidobacterium, Eubacterium, Clostridia, Butyrivibrio,
Roseburia, Akkermansia, Faecalibacterium, Bacillus, Prevotella, Lachnospiraceae,

Ruminococcus, Oxalobacter, and Blautia [60].

Diversity is acquired early in life from birth to as late as 5years of age but does
continue to evolve over the life span of the host in response to environmental

influences [61]. Infants born via vaginal delivery acquire amicrobiome that dif-

fers from those born via cesarean delivery [62]. Vaginally delivered infants
acquire the first inhabitants of their internal microbiome within hours of birth,

via vaginal and fecal exposure from their mother [63]. Infants fed primarily
breastmilk tend to have much richer Bifidobacterium and some Lactobacillus

abundance from these microbes naturally present in breastmilk [64]. As infants

begin to add solid foods more indicative of adult eating patterns, such as
complex carbohydrates, their microbiome fluctuates to resemble that of an

adult pattern more closely [63].

While birth and early diet initially impart diversity, environment influences the
development of diversity in the microbiome. The host’s continued exposure to

its surroundings is also a major contributory factor in the development of

microbial diversity. The hygiene hypothesis suggests that children (and adults)
who experience a greater diversity of microbes earlier in life have stronger

immune systems, which can adapt to a greater number of threats without

long-term harm to the host, and less incidence of chronic inflammatory dis-
eases later in life [27–29, 65, 66]. Both early-life exposures to diverse environ-

ments through birth and breastfeeding provide important exposure to

microbes, while environmental influences contribute as humans age.
Metabolic Crossfeeding

Another central concept to the microbiome’s balance and adaptability is

metabolic cross-feeding between taxa. Bifidobacteria can cross-feed with certain
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butyrate producers [16], for instance. This means that one bacterium produces

a by-product or metabolite that feeds another. The Lactobacillus genus is well
known for its production of lactic acid, which is used by other species, such

as Anaerostipes caccae, to produce butyrate [67]. When levels of the primary

genus fall, the secondary genera that rely on its metabolites are affected as well
[67, 68]. In order to bring balance and homeostasis, consideration must

be given to the interrelated nature of the ecosystem and not just one or two

keystone species.

Suppressing Diversity Through Prescription Antibiotic Use

Use of prescription antibiotics is a critical and lifesaving tool for health-care

providers. Because of widespread overuse in past decades, however, many spe-
cies of microorganisms have grown tolerant or resistant to many antibiotics

[69, 70]. Additionally, because recommending a probiotic supplement along-

side an antibiotic drug is still not common in many health-care providers’ pro-
tocols [71], research is discovering that individuals with multiple courses of

antibiotics are often lacking sufficient abundance of keystone microorganisms,

which have been almost permanently suppressed through that antibiotic
use [72].

The use of probiotics concurrently or immediately following a course of
antibiotics has been shown to lessen the side effects of antibiotics and may

prevent some loss of microorganism diversity typically seen with standard

and routine antibiotic use [71, 73–75].

Antibiotic effects on diversity are variable. A study conducted with 21 patients

treated with broad-spectrum antibiotics found that patients saw an average of

25% reduction in microbial diversity found in fecal samples after antibiotic
administration, and the number of taxa present fell from 29 to 12; furthermore,

analysis revealed that taxa in the gram-negative groups grew in abundance in
relation to the gram-positive microbes, causing a shift in gram-positive to

gram-negative balance, which may explain inflammatory symptoms such as

diarrhea [76]. Abundance of commensal microorganisms, particularly some
SCFA producers, may be affected between 40days [77] and 4years [72]

post treatment, while the Firmicutes-Bacteroidetes ratio increases in favor of

Firmicutes, which has been linked to inflammatory conditions such as obesity
[78, 79] and a lower competitive inhibition of pathogens [80].
COLON HEALTH AND COLORECTAL CANCER

Perhaps, one of the most beneficial discoveries of microbiome research in
human health is the connection between SCFA levels in the colon and T-cell

differentiation, immunomodulation, colitis, and colorectal cancer. The effect
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of butyrate levels on T-cell differentiation has been extensively researched in the

pursuit of better understanding of chronic inflammatory diseases.

Butyrate’s main contribution to immunomodulation in the intestinal lumen

and colonocyte is its influence on T-cell differentiation through GPCRs, which
influences those T cells’ response to antigens, from sources such as diet,

microbes, and environmental chemicals [33]. In two in vitro studies, one path-

way through which butyrate’s immunomodulation was shown was the inhibi-
tion of NF-κB [81] and modulating gene expression to reduce the risk of

colorectal cancer [40]. It is this latter effect that is of particular importance to

many health-care providers, as the early detection of colorectal cancer has
contributed to a significant reduction (20%) of new colorectal cancer cases

[82]. The risk for developing colorectal cancer is also slightly higher in men

(4.49% over one’s lifetime) than in women (4.15% over one’s lifetime) [83].

Butyrate is not the only SCFA produced by colonic bacteria that benefits the

colonocytes and intestinal immunity. Acetate and propionate are also
by-products of fiber fermentation in the colon and have broad influence on

T-cell differentiation through different mechanisms but yield the same overall

result: greater immunomodulation to reduce aberrant immune responses, in
addition to increases in Lactobacillus genus, Lachnospiraceae family, and an

abundance of Akkermansia [84].

Abundance of SCFAs is correlated with lower risk of colitis [85]. SCFAs bind to
GPCRs to stimulate production of Tregs, the abundance of which controls or

influences inflammatory responses [86]. Increased inflammatory responses

are associated with increased incidence of colitis [87], which, if left untreated,
has a higher incidence of tumorigenesis and colorectal cancer [85].
MEN’S HEALTH AND THE GUT MICROBIOME

The gender of the host has been shown to affect the gut microbiota composi-

tion [88]. Specifically, some studies have also shown that gender-specific

immune systemmodulation could be attributed to the gut microbiota [89, 90].
Gut Microbiome and Testosterone

Male obesity has been associated with decreased testosterone production and

lowered fertility. A high-fat- or high-calorie-based diet affects the gut micro-
biome and could result in intestinal permeability leading to the circulation

of LPS, which in turn could result in the body lowering testosterone production

to help fight infections [91]. Testosterone is a known immunosuppressant,
and it has been postulated that lowering testosterone could have resulted in

evolutionary benefits to fight infection [92, 93].
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Gut Microbiome and Prostate Health

Several studies have been conducted on the role of the gut microbiome in the
pathogenesis of prostate cancer. One such study observed higher abundance of

Bacteroides massiliensis in prostate cancer cases as compared with controls [94].

Meta studies have indicatedmultiple anatomic sites involved in prostate health
and disease [95]. Dysbiosis of the microbiome could lead to inflammatory

response that increases the chances of diseases at different anatomical sites.

A novel microbiome-derived risk factor for prostate cancer based on 10 aberrant
metabolic pathways has also been proposed [96]. Overall studies in this space

are still preliminary, and more extensive studies are needed to understand the

underlying relationships.

Cardiovascular Health

Due to technological limitations, the connection between the gut microbiome

and cardiovascular inflammation has not been fully elucidated. The model of

microbial influence on atherosclerosis has been studied in great depth in
animals; however, human trials are still ongoing. Previous findings show that

there is a direct and indirect influence from the periodontal microbiome on

immune dysregulation and inflammation that precipitate atherosclerosis
through disruption of endothelial cell function [97].

Making a leap to the contribution of inflammation from intestinal microbiota
to atherosclerosis is much more complex. There appear to be mechanisms with

potential influence on the development and propagation of inflammatory arte-

rial plaque. Of most recent import is the involvement of intestinal bacteria that
produce trimethylamine, a by-product of carnitine metabolism by microbes in

the gut and that is converted to trimethylamine N-oxide (TMAO) in the liver.

In animal models, TMAO causes atherosclerosis [98, 98a]. In human models,
TMAO increases platelet production and reactivity and the formation of foam

cells within plaques. There is also significantly higher relative risk of atheroscle-

rosis in patients with the highest TMAO levels compared with the lowest
levels [99].

In human studies of the microbiota/TMAOmodel, vegans fed carnitine did not

have greater TMAO levels, which led researchers to theorize that this popula-
tion lacks sufficient meat-degrading microbes due to dietary differences

(Koeth et al., 2013). While carnitine is found most abundantly in red meat

and eggs, other food sources of carnitine include poultry and fish. In studies
comparing dietary carnitine sources, consumption of fish high in carnitine

was shown to be protective against atherosclerosis, and therefore, carnitine

alone cannot be the single high-risk variable in atherosclerosis [99]. Other
studies in humans have shown that individuals with impaired renal function
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are most at risk for accumulation of TMAO and, therefore, see greater risk of

atherosclerosis alongside intestinal microbiome dysbiosis [100].

Bogiatzi et al. [101] found, in a study of 316 at risk patients, that patients

with the highest levels of atherosclerotic plaque had higher levels of TMAO
compared with those in the lowest plaque group, independent of renal

function. This study also stated that no differences between the microbiota

of sample and control existed; however, no explanation of microbiome
screeningwas given, nor were data provided on intestinalmicrobial composition

of participants.

Kasselman et al. [102] posit that the intestinal microbiome plays a role in devel-
opment of atherosclerotic plaques through inflammatory mechanisms originat-

ing in the gut, including the activation ofNF-κB, which affects gene expression by

activating inflammatory immune cells and downstream by-products such as
cytokines, nitric oxide synthase (NOS), and leukocyte adhesion. The proposed

mechanism of NF-κB relates to the overproduction of metabolites by microbes
in the Bacteroidetes phyla, which is seen in higher abundance in individuals with

obesity and metabolic syndrome. This increased binding of metabolites such as

acetate and propionate, SCFAs favored in a Bacteroidetes-dominant microbiome
type, to TLR-4 stimulates NF-κB, which stimulates production of inflammatory

cytokines by adipocytes [103].
DIETARY INFLUENCE

Probiotic Foods

Perhaps, one of the most ubiquitous nutritional trends of the last decade

has been the resurgence of interest in probiotics. Both probiotic foods and sup-
plements work through modifying host immune responses and competitive

inhibition of pathogens, with indirect benefits to nutrient digestion and

absorption [104]. Many health claims aremade about the powers of probiotics,
but only a few have been substantiated in human or animal trials.

Fermented foods in the human diet have been found to date back at least

9000years. Humans have fermented everything from fruits and vegetables,
dairy, and alcoholic and nonalcoholic beverages [105]. An important distinc-

tion is that while all probiotic foods are fermented, not all fermented foods are

probiotic. In order to be probiotic, a food or drink must contain live microbial
cultures at the time of ingestion. Some fermentation processes do not yield live

cultures, such as alcoholic beverages. The most popular traditional ferments

found across broad cultures include yogurt, kombucha, sauerkraut, kimchi,
and miso.
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Probiotic foods have been found to positively influence the intestinalmicrobiome

inbothgrowthof commensalmicroorganismsand suppressionofpathogens.Zou
et al. [106] found that probiotic foods and supplements containing Lactobacillus

species can prevent and even eradicate Helicobacter pylori infections, reducing the

ratesof stomachcancer.Chiuet al. [107] found that a fermentedplant extractdrink
lowered body weight, body fat, and body mass index, while increasing total

phenolic compounds in the plasma of individuals. The same drink also

reduced total cholesterol and low-density lipoprotein cholesterol (LDL-C). Sub-
jects were found to have increased abundance of Bifidobacterium and Lactobacillus

genus, with reduced abundance of Escherichia coli and Clostridium perfringens.

Another study in children using a probiotic drink containing Lactobacillus
casei found that levels of Bifidobacterium and Lactobacillus increased, while

levels of Enterobacteriaceae and Staphylococcus decreased [108]. A probiotic drink

containing Bifidobacterium animalis was shown to potentiate colonic SCFA
production and decrease abundance of pathobiont Bilophila wadsworthia [109].

Debate exists whether probiotic supplements confer benefit for the same period
of time as probiotic foods. Elli et al. [110] suggest that bacteria in fermented

foods last about as long as those found in supplements, approximately

5–7days, based on stool sample collections of study participants. Bezkorovainy
[111] suggests probiotic foods may confer more benefit or yield a greater num-

ber of surviving microbes due to the presence of naturally existing prebiotic

compounds such as fiber and lactose.
Probiotic Supplements

Despite significant research into the field of probiotics, only a limited number
of species have been studied in human trials. Most studies use probiotic strains

that are dosed atmuch higher concentrations thanwhat would be found in pro-

biotic foods [112]. Probiotic supplements usually do not have prebiotics
included as traditional fermented foods would; however, some findings suggest

that prebiotics included with probiotics increase survivability in harsh gastro-

intestinal conditions [113].

Probiotics are commonly recommended by health-care providers for patients

suffering from IBS; however, due to limited training and education of
health-care professionals, recommendations vary over a wide range of prod-

ucts, as do the results of the patient. Most probiotics contain either Lactobacilli

or Bifidobacteria or a combination of strains from both genera. A commonly
used yeast-based probiotic strain is Saccharomyces boulardii.

Table 2 summarizes the most well-studied clinical benefits of probiotics by spe-

cific species association based primarily on human studies, but animal studies
were noted.



Table 2 Probiotic Microorganisms With Known Clinical Benefits Based on Human Trials

Clinical Associations and
Benefits Probiotic Microorganisms Associated Source

Antibiotic-associated diarrhea Saccharomyces boulardii
Lactobacillus rhamnosus LGG
Lactobacillus acidophilus
Lactobacillus bulgaricus
Bifidobacterium longum
Bifidobacterium lactis

[73, 104,
114]

Celiac disease Bifidobacterium breve [115, 116]

Clostridium difficile prevention or
treatment

Lactobacillus plantarum 299V
Saccharomyces boulardii

[117, 118]

Constipation Lactobacillus casei
Lactobacillus plantarum
Lactobacillus rhamnosus LGG
Lactobacillus reuteri
Bifidobacterium bifidum
Bifidobacterium lactis
Bifidobacterium infantis
Bifidobacterium longum

[114]

Depression Multistrain product (L. acidophilus, L. casei, and B. bifidum)
Multistrain product (B. bifidum, B. lactis, L. acidophilus, L. brevis,
L. casei, L. salivarius, and L. lactis)
Lactobacillus helveticus
Bifidobacterium longum

[119–121]

Dermatological disorders Lactobacillus rhamnosus LGG
Lactobacillus salivarius

[114,
122–124]

Fortification of intestinal barrier
(reducing permeability)

Lactobacillus plantarum 299V
Bifidobacterium

[68, 117,
125, 126]

Glycemic control Multispecies supplement (L. acidophilus, L. casei, L. rhamnosus,
L. bulgaricus, B. breve, B. longum, and Streptococcus
thermophilus)

[127]

Helicobacter pylori infection
reduction

Bifidobacteria—multiple strains (BIR-0304, BIR-0307, BIR-0312,
BIR-0324, BIR-0326, BIR-0349)

[128]

Inflammatory bowel disease
(IBD)—Crohn’s disease

Saccharomyces boulardii
Bifidobacterium

[104, 129]

Inflammatory bowel disease
(IBD)—ulcerative colitis (UC)

Saccharomyces boulardii
Bifidobacterium
VSL#3a

Multiple strain product (B. breve, B. bifidum, and L. acidophilus)

[104, 130,
130a]

Intestinal hyperpermeability Lactobacillus plantarum
Lactobacillus rhamnosus LGG
Lactobacillus acidophilus
Multistrain product (L. acidophilus, L. rhamnosus, L. casei,
L. plantarum, L. fermentum, B. lactis, B. breve, B. bifidum,
and S. thermophilus)

[125, 131,
132]

Irritable bowel syndrome
(diarrhea-predominant)

VSL#3a

Bifidobacterium longum spp. infantis
Lactobacillus rhamnosus LGG

[104,
133–135]

Continued
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Table 2 Probiotic Microorganisms With Known Clinical Benefits Based on Human Trials Continued

Clinical Associations and
Benefits Probiotic Microorganisms Associated Source

Kidney stones Oxalobacter formigenes [24]

Nonsteroidal antiinflammatory
drug (NSAID) enteropathy

Lactobacillus acidophilus [136]

Obesity Lactobacillus gasseri
Lactobacillus acidophilus

[114, 137]

Respiratory tract infections Lactobacillus rhamnosus LGG
Lactobacillus plantarum
Lactobacillus paracasei

[138, 139]

Rheumatoid arthritis Lactobacillus casei
Multiple strain product (L. acidophilus, L. casei, and B. bifidum)

[140, 141]

Seasonal allergies VSL#3
Lactobacillus casei
Combination of L. rhamnosus LGG + L. gasseri
Bifidobacterium longum

[142]

Travelers’ diarrhea Lactobacillus rhamnosus LGG
Saccharomyces boulardii
Lactobacillus acidophilus
Lactobacillus casei

[104, 114]

aVSL#3 is a multistrain probiotic product containing L. casei, L. plantarum, L. acidophilus, L. bulgaricus, B. longum, B. breve, B. infantis,
and S. thermophilus.
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In addition to the disease- or symptom-specific benefits in Table 2, general

benefits of specific probiotic supplements include reduction of inflamma-

tion caused by pathogenic or inflammatory microbes [143]; competitive
inhibition of pathogens and prevention of pathogenic adhesion to mucosal

surfaces [126]; and even contributing to the production and absorption of

antioxidants from both diet and endogenous production, such as
glutathione [127].

When selecting a probiotic product, consideration should be given to
important features such as its colony-forming unit (CFU) count and its

ability to deliver live microorganisms to the colon, where they are able

to thrive and produce benefit to the host. In vitro studies have claimed that
probiotic organisms do not survive digestion [144]; however, microencap-

sulated or enteric coated products are often more effective than products in

standard capsules or powders due to allowing for better survival of extreme
pH changes in the upper GI tract [104]. Probiotic supplements can be

detected in the stool of the host for about 5–7days after consumption
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and, therefore, must be consumed regularly to provide significant long-term

benefit [110, 111]. Some concerns exist as to the contents of probiotic
supplements being accurate based on labeling, as some have been found

not to contain any live organisms or not contain the organisms listed on

their labels [145, 146].

One last category of probiotics of relevance is that of spore-forming bacteria.

Currently, only products containing Bacillus species are available commercially
with spore-formingmicroorganisms, and some concerns exist about their safety

in humans [147]. Limited research available suggests that specieswithout toxin-

producing genes are considered safe for human consumption [148]. Several
human pathogens exist in the same genus (B. anthracis and B. cereus)

but are unrelated to those commonly used in probiotic products (B. subtilis

and B. coagulans) [149]. Spore formers are antibiotic-resistant while in their
spore form. Bacillus, a genus traditionally introduced to humans through soil

content or consumption, is more resilient in the human GI tract than nonspore

formers due to its ability to survive more extreme pH and temperature [147].
Bacillus strains have been reported to display antimicrobial, antioxidative, and

immune-modulatory activity in the host, due to their ability to produce

AMPs [149].
Prebiotics
Fiber Variety and Diversity
Prebiotics are nutritional components that, when consumed by the host,

impart benefit to commensal microbes in the GI tract and increase abundance
of one or more of those microbes. Prebiotics can be found in plant sources and

come from either fibrous components or phenolic components. Fibrous

components of nutrients are not available for digestion by the human host
due to a lack of appropriate fiber-degrading enzymes; however, commensal

microbes within the host’s GI tract possess such enzymes. SCFAs are just one

by-product of that microbial digestion, and diets low in fiber and high in ani-
mal protein have been shown to decrease the abundance of SCFA (butyrate and

acetate) in the colon [17]. Animal studies have also shown that, in addition to

balancing the Firmicutes-Bacteroidetes ratio, they also dose-dependently increase
satiety hormones in the host [150].

The main categories of fiber include fructooligosaccharides (FOS), galactooli-
gosaccharides (GOS), xylooligosaccharides (XOS), resistant starch, and pectin.

Each type of fiber has different effects on the microbiome and on the host’s

metabolism and health, due to differing chemical structures and metabolites
of its fermentation.
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FOS has a strong stimulatory effect on the abundance of Bifidobacteria and on

levels of SCFAs found in the colon. This fiber group also increases the abun-
dance of Lactobacilli in both the small and large intestines [151, 152]. In addi-

tion, the increase in SCFAs appears to reduce plasma levels of free fatty acids

(FFA), which not only improves glucose uptake but also influences gut
hormones such as GLP-1 and PYY, which influence glycemic control through

stimulation of insulin production [151].

GOS also has stimulatory effects on the abundance of Bifidobacteria [153] and

has been shown to significantly improve clinical outcomes for individuals

with reduced lactose digestion and tolerance through increasing abundance
of lactose-fermenting Bifidobacterium, Faecalibacterium, and Lactobacillus

[154]. In addition, GOS has also shown to increase fecal butyrate

concentrations [155].

XOS stimulates growth of Bifidobacteria [156–158] and has been shown to sup-

press overgrowths of pathogens in the GI tract [158]. A trial conducted by Van
den Abbeele et al. [159] demonstrated that a XOS and green coffee extract blend

increased Bifidobacteria and Akkermansia muciniphila, an important mucus-

degrading commensal in the colon, and modulated the intestinal immune sys-
tem to favor antiinflammatory responses.

Resistant starch (RS) is so named because its molecular structure prevents its

digestion by host enzymes; therefore, it is resistant to digestion by the human
host, but not by commensal microbes in the colon. RS reduces the abundance

of pathogenic Proteobacteria such as E. coli/Shigella and significantly increases

the abundance of Bifidobacteria, which increases SCFA levels in the colon [160].
RS also attenuates postprandial (but not fasting) insulin and glucose responses

in insulin-resistant individuals, while increasing abundance of Faecalibacterium,

Roseburia, Akkermansia, and Ruminococcus, which increases colonic SCFAs [84,
161–163].

Major dietary sources of prebiotic fibers are listed in Table 3 to assist in
nutritional selection and variety for optimal intake of prebiotic foods.

Of note, prebiotics should be used with caution if one suspects the presence

of small intestinal bacterial overgrowth (SIBO), as they may exacerbate
overgrowths of microorganisms in the small bowel and contribute to further

inflammatory symptoms [165–169].

Phenolic Compounds From Diet and Diversity
Phenolic compounds are chemicals in plants that impart some beneficial action
either on the microbiota, which consume or convert them, or on the human

host, who absorbs them. Phenolic compounds are usually pigment-associated,



Table 3 Sources of Prebiotic Fibers From Diet

Type of Fiber Food Sources

Fructooligosaccharides (FOS) (primarily feed
Lactobacillus and Bifidobacteria)

Chicory root, agave, bananas, inulin (onions, leeks, and garlic),
asparagus, wheat, barley, nuts

Galactooligosaccharides (GOS) (primarily feed
Lactobacillus and Bifidobacteria) [153]

Jerusalem artichokes, black beans, kidney beans, lima beans,
beet roots, broccoli, chickpeas, lentils

Xylooligosaccharides (XOS) (primarily feed
Lactobacillus and Bifidobacteria)

Milk, honey, vegetables with a high cellulose content (celery,
Brussels sprouts, cabbage, kale, squash, and sprouts), rice
bran, soybeans, bamboo shoots

Resistant starch (can be fermented to yield
butyrate) [161]

Banana flour, cooked oats, lentils, green bananas, white
beans, barley, green peas, whole wheat, nuts

Pectin (can be fermented to yield butyrate and
increases intestinal epithelial cell proliferation [164])

Apples, pears, guavas, citrus fruits, plums, gooseberries
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and the amount and diversity of them differ by the hue of the plant, the quality

of the soil in which the plant grows, and factors such as the environmental

conditions under which the plant is grown [170].

The chemical structure of phenolic compounds is what classifies each com-

pound. The main mechanisms of benefit in the gastrointestinal tract appear

to be the stimulation of growth of commensal microbes and the antimicrobial
properties of phenolic compounds toward pathobiont and pathogenic

microorganisms [171].

The most commonly used and potent antimicrobial phenolic compounds are

presented in Table 4.

Phenolic compounds are known to ameliorate inflammation through a variety
of pathways, including locally reducing oxidative stress in the intestinal tract;

altering gene expression related to inflammatory response, which includes

NF-κB; and suppression of downstream cytokine responses [182].

Microbes in the gastrointestinal tract act on phenolic compounds by perform-

ing deglycosylation, the hydrolysis of esters and amides, and deglucuronida-
tion of excreted mammalian metabolites; aromatic dehydroxylation,

demethoxylation, and demethylation; and hydrogenation, α-oxidation, and
β-oxidation [189].

There exists some debate as to whether themajority of phenolic compounds are

even available to the host, due to limited absorption in the gastrointestinal
tract. Williamson and Clifford [189] suggest that there is some partial absorp-

tion of most phenolic compounds, while Kahle et al. [190] found that around

20% of phenolic compounds are absorbed by the host in the small intestine,



Table 4 Most Commonly Used and Potent Phenolic Compounds From Nutritional Sources

Plant Source/Phenolic
Compound Microbes Impacted Main Attributes

Berberine (found most abundantly
in goldenseal, Oregon grape,
barberry, and Chinese
goldthread plants)

Gram-negative microbes producing LPS Improves intestinal barrier integrity
in rats with endotoxemia (LPS);
injections of LPS inhibited the
expression of TJ proteins but was
attenuated by berberine
administration [172]

Staphylococcus aureus Berberine contains a weak acid that
inhibits bacterial defenses against
berberine alkaloids and enhances
the antimicrobial properties of the
polyphenol against S. aureus [173]

Escherichia coli, Bacillus subtilis,
S. aureus, and Enterococcus faecalis
(methicillin-resistant S. aureus (MRSA)
and vancomycin-resistant Enterococcus
(VRE))

Inhibition of both gram-positive and
gram-negative bacteria [171]

Decreases Firmicutes and increases
B. phyla, reducing overall ratio; decrease
in Ruminococcus species

Berberine is an alkaloid and
considered an “antibiotic with broad
spectrum” [174]

Carvacrol (from oregano) Escherichia coli O157:H7, Salmonella
typhimurium, Listeria monocytogenes

Inhibition of pathogenic
microorganisms [171]

Mycobacterium tuberculosis, S. aureus,
L. monocytogenes, E. coli, E. faecium,
S. enterica, Pseudomonas aeruginosa

Inhibition of pathogenic
microorganisms [171]

Bacillus subtilis Effective antimicrobial against
soil-based bacteria [175]

Klebsiella oxytoca,K. pneumoniae, E. coli Inhibits pathogenic microorganisms
[176]

Enterohemorrhagic E. coli O157:H7
(EHEC)

Reduces EHEC motility and
attachment to human intestinal
epithelial cells and decreased
Shiga-like toxin synthesis [177]

Thymol (from thyme) Salmonella typhimurium,
L. monocytogenes, M. tuberculosis

Inhibition of pathogenic
microorganisms [171]

Escherichia coli, K. pneumoniae,
methicillin-resistant S. aureus (MRSA);
extremely strong activity against 120
strains of Staphylococcus, Enterococcus,
Escherichia, and P. genera

Inhibits growth of pathogenic
microorganisms [178]

Klebsiella oxytoca, K. pneumoniae,
E. coli

Inhibits pathogenic microorganisms
[176]

Enterohemorrhagic E. coli O157:H7
(EHEC)

Reduces EHEC motility and
attachment to human intestinal
epithelial cells and decreased
Shiga-like toxin synthesis [177]
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Table 4 Most Commonly Used and Potent Phenolic Compounds From Nutritional Sources Continued

Plant Source/Phenolic
Compound Microbes Impacted Main Attributes

Cinnamic acid and
cinnamaldehyde (from
cinnamon)

Mycobacterium tuberculosis, E. coli
O157:H7, S. typhimurium,
L. monocytogenes

Inhibit growth of pathogenic
microorganisms [171]

Pseudomonas aeruginosa Strongly inhibit pathogenic
microorganisms [179]

Enterohemorrhagic E. coli O157:H7
(EHEC)

Reduce EHEC motility and attachment
to human intestinal epithelial cells and
decreased Shiga-like toxin synthesis
[177]

Resveratrol (most concentrated
in red wine)

Helicobacter pylori May reduce abundance of pathogen
and inflammation resulting in gastritis
[180]

Bifidobacteria, Akkermansia Promotes abundance of commensal
microorganisms [174]

Enterococcus, Prevotella, Bacteroides,
Bifidobacterium, B. uniformis,
Eggerthella lenta, and Blautia
coccoides, Eubacterium rectale

Daily consumption of red wine
polyphenols for 4weeks significantly
increased commensal microorganisms
[181]

Vibrio cholerae, Proteus mirabilis Inhibits growth of pathogenic
microorganisms [171]

Gram-negative LPS-producing
bacteria

Reduces abundance of endotoxin-
producing microorganisms [182]

Curcumin (from turmeric) Decrease in Enterobacteria and
Enterococci, increase in Lactobacillus
and Bifidobacterium

Animal study: decreases abundance of
pathogenic and pathobiont taxa and
reduces translocation of microbes and
endotoxins through intestinal epithelial
barrier into systemic circulation [183]

Increased the abundance of
butyrate-producing bacteria

Animal study: suppression of NF-κB
activation in colonic epithelial cells,
increased fecal butyrate level,
increased expansion of Treg cells
regulatory dendritic cells [184]

Reduction in Prevotella; significant
increase in Alistipes; abundance of
Bacteroides was significantly higher;
Lactobacillus increased,
Ruminococcus decreased

Animal study: significant beneficial
effects on increases in Lactobacillus,
and reducing Firmicutes-
to-Bacteroidetes ratio and reducing
abundance of opportunists [185]

Nonpathogenic E. coli, may stimulate
growth of beneficial strains

Exhibits the highest curcumin-
converting ability [186]

Catechins/epigallocatechins
(EGCG) (from tea)

Helicobacter pylori and E. coli Inhibits growth of pathogenic
microorganisms [187]

Quercetin Escherichia coli, Serratia, and
K. pneumoniae

Inhibits growth of pathogenic
microorganisms [188]

Bacteroides vulgatus, A. muciniphila Increased abundance of commensal
microorganisms [174]
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while the majority arrive in tact in the colon and are degraded by colonic

microbes, stimulating growth of certain taxa.

Examples of those phenolic compounds that stimulate growth of beneficial

bacteria include hydroxycinnamic acid and chlorogenic acid in coffee (both
also found in fruits), which stimulate butyrate producers in the colon [191],

and anthocyanins in blueberries and other blue, purple, and red produce that

have shown stimulatory effects on the growth of commensal microorganisms
such as Bifidobacteria and Akkermansia [192, 193].

Thousands of plant-based phenolic compounds exist in the human diet, and

the most optimal intake of those compounds will be a diet inclusive of a high
degree of variety from plant sources. Table 5 lists 50 of the highest phenolic

content foods commonly consumed in the human diet with themost prevalent

phenolic compounds found in those foods.
ADDITIONAL BENEFICIAL NUTRIENTS

Beyond probiotics, prebiotics, and phenolic compounds, other micronutrients

common to the human diet impart benefit to both themicrobiota and the host.
Table 6 lists and describes the most well studied of those, which include the fat-

soluble vitamins A and D, omega-3 fatty acids, and the amino acid L-glutamine.

All of these nutrients also impart benefit to the intestinal epithelial barrier
through actions of immunomodulation and/or tight junction modulation

[34, 84, 195, 196, 198, 203, 205, 210, 213, 214].
CONCLUSION

While the intestinal microbiome obviously holds influence over broad
health functions in the host, there is still much to be studied in regard to

its role in disease. Technological advances have allowed for more accurate

sequencing of the microbiome and accelerated speed and reach of research,
which have allowed for greater understanding of how the human

microbiome differs from animal models in studies. The functions of the

gut microbiome in human health and disease include immunomodulation,
fiber fermentation, vitamin and nutrient metabolism, inflammatory

response modulation, competitive inhibition of pathogens, and mucosal

barrier fortification.

Communication between the microbiota and the human host is bidirectional

and takes place via chemical messages from metabolites such as SCFAs, AMPs,
and microbial membrane peptides. Of key importance to this communication

is the diversity and abundance of species, which are affected by a number of



Table 5 Commonly Consumed High-Polyphenol Foods and Drinks by Phenolic Content and
Associated Phenolic Compounds

Food
Major Phenolic
Compounds Found Food

Major Phenolic
Compounds Found

1 Cilantro Caffeic acid, protocatechuic
acid, glycitin, and vanillic acid
[194]

26 Roasted
soybean seed

Isoflavonoids: daidzein,
glycitein, genistein, and
glucosides

2 Cloves (spice) Hydroxyhenylpropenes:
eugenol, acetyl eugenol

27 Milk chocolate Flavanols: EC

3 Peppermint, dried
(herb)

Flavonoids, eriocitrin;
hydroxycinnamic acids,
rosmarinic acid

28 Strawberry Anthocyanins, flavanols,
hydroxybenzoic acids,
hydroxycinnamic acids,
stilbenes

4 Celery seed Apigenin, luteolin 29 Red raspberry Anthocyanins, flavonols,
hydroxycinnamic acids

5 Cocoa powder Flavanols: epicatechin (EC) 30 Coffee Phenolic acids: chlorogenic
acid

6 Mexican oregano,
dried (herb)

Dihydroquercetin; naringenin;
luteolin; flavonols: galangin,
quercetin

31 Ginger, dried
(root)

Hydroxycinnamic acids,
other:
hydroxyphenylpropenes

7 Dark chocolate
(70% or higher)

Flavanols, epicatechin (EC);
hydroxycinnamic acid, ferulic
acid

32 Whole grain
wheat flour

Phenolic acids:
hydroxybenzoic acids,
hydroxycinnamic acids

8 Flaxseed meal Hydroxycinnamic acids,
lignans

33 Prune Flavonols, hydroxycinnamic
acids

9 Black elderberry Anthocyanins; flavonols:
quercetin

34 Almond Flavonols: kaempferol,
quercetin, hydroxybenzoic
acids

10 Chestnut Hydroxybenzoic acids: gallic
acid, ellagic acid, tannins

35 Black grape Anthocyanins, flavanols,
stilbenes

11 Sage, dried (herb) Hydroxybenzoic acids: gallic
acid, vanillic acid;
hydroxycinnamic acids:
caffeic acid, rosmarinic acid

36 Red onion Anthocyanins, flavonols

12 Rosemary, dried
(herb)

Flavonols; hydroxycinnamic
acids: rosmarinic acid, caffeic
acid

37 Thyme, fresh
(herb)

Flavones; hydroxycinnamic
acids: rosmarinic acid,
caffeic acid

13 Thyme, dried
(herb)

Hydroxybenzoic acids;
hydroxycinnamic acids,
rosmarinic acid

38 Refined maize
flour

Hydroxycinnamic acids

14 Blueberry Anthocyanins; flavonols,
quercetin; phenolic acids,
chlorogenic acid

39 Soy, tempeh Isoflavonoids: daidzein,
glycitein, genistein, and
glucosides

15 Capers
(herb/seasoning)

Flavonols, kaempferol;
quercetin

40 Whole grain rye
flour

Alkylphenols

16 Curcumin Curcuminoids, flavonoids,
phenolic acids

41 Apple Phlorizin; phenolic acids:
chlorogenic acid, quercetin

Continued
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Table 5 Commonly Consumed High-Polyphenol Foods and Drinks by Phenolic Content and
Associated Phenolic Compounds Continued

Food
Major Phenolic
Compounds Found Food

Major Phenolic
Compounds Found

17 Black olive Anthocyanins; flavones,
luteolin; flavonols;
hydroxycinnamic acids;
tyrosols: hydroxytyrosol,
oleuropein

42 Spinach Flavonols

18 Hazelnut Flavonols: epigallocatechin
(EGCG)

43 Black tea Flavanols: catechin, EGCG,
procyanidin; flavonols:
kaempferol, quercetin;
hydroxybenzoic acids

19 Pecan nut Flavonols: catechin, EGCG 44 Red wine Phenolic acids,
anthocyanins, tannins,
stilbenes (resveratrol)

20 Plum Phenolic acids: chlorogenic
acid; procyanidins,
anthocyanins

45 Green tea Flavanols: EC, EGCG

21 Green olive Hydroxycinnamic acids;
tyrosols, oleuropein

46 Yellow onion Flavonols: quercetin

22 Sweet basil, dried
(herb)

Hydroxycinnamic acids 47 Pure apple juice Dihydrochalcones; flavanols:
catechin, procyanidin;
flavonols: kaempferol,
quercetin; hydroxycinnamic
acids

23 Curry powder
(spice)

Curcuminoids 48 Pure
pomegranate
juice

Punicalagin (an ellagitannin)

24 Sweet cherry Anthocyanins, flavonols,
hydroxycinnamic acids

49 Extra virgin olive
oil

Tyrosols, lignans:
pinoresinol; phenolic acids,
hydrolysable tannins

25 Blackberry Anthocyanins; flavanols, EC;
phenolic acid, ellagic acid

50 Peaches
(whole,
including peel)

Flavanols, catechin;
hydroxycinnamic acids

Data reproduced from (unless noted otherwise) Phenol Explorer. Rothwell JA, P�erez-Jim�enez J, Neveu V, Medina-Ramon A, M’Hiri N,
Garcia Lobato P, Manach C, Knox K, Eisner R, Wishart D, Scalbert A. Phenol-Explorer 3.0: a major update of the Phenol-Explorer
database to incorporate data on the effects of food processing on polyphenol content. Database 2013. https://doi.org/10.1093/
database/bat070.
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influences from birth through adulthood, including environmental exposures

and the use of antibiotics. Low diversity is associated with a number of chronic
diseases in humans. Restoring balance to this ecosystem therapeutically is pos-

sible through a combination of prebiotic foods, probiotic foods and supple-

ments, and plants high in phenolic compounds.

https://doi.org/10.1093/database/bat070
https://doi.org/10.1093/database/bat070


Table 6 Additional Beneficial Nutrients With Immune and Microbial Modulatory Properties

Nutrient Associations With Immunity Associations With Microbiota

Vitamin A Dietary intake of fiber can alter the populations of
SCFA-producing microbes favoring growth of
Lactobacillus genus, Bacteroidetes phylum, and
Akkermansia genus [84]

Retinoic acid/vitamin A levels are associated with
amelioration of pathogen inflammation and
increased levels of zonulin (ZO-1) and occludin
proteins into the cellular tight junctions [195]

The conversion of vitamin A to retinoic acid, its
active form, influences dendritic cell communication
with T cells to increase differentiation into Tregs.
Without adequate levels of retinoic acid, tolerogenic
dendritic cells have reduced T-cell differentiation
[84]

Retinoic acid influences dendritic cell signaling
to promote Treg production [34]

Trans-retinoic acid prevents the overconversion
of T cells into Th-like cells, which can lead to
autoimmunity; adequate retinoic acid selects for
Treg production and reduces autoimmune
responses [196]

Vitamin D Vitamin D influences both FOXp3- and
IL-10-producing Tregs and inhibits Th17
pro-inflammatory pathways [34]

5000 IU of vitamin D3 per day for 90days
increased the abundance of Akkermansia, which
promotes immune tolerance and increased
butyrate producers Faecalibacterium and
Coprococcus [197]

Defensins are produced within human
macrophages and dendritic cells, influenced by
vitamin D; vitamin D induces host response to
microbes [198]

Vitamin D3 treatment caused beneficial changes
in Firmicutes, Actinobacteria, and Proteobacteria
levels in MS patients and an increase in
Enterobacteria [199]

Vitamin D stimulates production of pattern
recognition receptors, antimicrobial peptides,
and cytokines and affects microbe sensing and
inhibition of pathogens [198]

Animal study showed that high-dose vitamin D3
supplementation is associated with a shift to a
more inflammatory fecal microbiome and
increased susceptibility to colitis in animals with
genetic predisposition to colitis, with a fall in
circulating vitamin D occurring as a secondary
event in response to the inflammatory process
[200]

Vitamin D deficiency changes the intestinal
microbiome and reduces microbial B vitamin
production in the gut. A lack of pantothenic acid
results and produces a pro-inflammatory state
[201]

Vitamin D3 supplementation changed the gut
microbiome in the upper GI tract to a less
inflammatory state [202]

Omega-3
fatty acids

Eicosapentaenoic acid reinforces cellular tight
junctions [203]

Higher omega-3 (specifically DHA) intake is highly
correlated with microbiome diversity [204]

Increase is seen in butyrate-producing
Lachnospiracea species: Eubacterium,

Continued
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Table 6 Additional Beneficial NutrientsWith Immune andMicrobial Modulatory Properties Continued

Nutrient Associations With Immunity Associations With Microbiota

An in vitro study found that omega-3s alone
decreased epithelial permeability and improved
tight junction stability [205]

Roseburia, Anaerostipes, and Coprococcus
[206]

Essential fatty acid double bonds being
hydrolyzed in the large intestine has antimicrobial
properties and increases Bifidobacteria while
decreasing intestinal permeability [206]

Omega-3s from plant sources may lower
Bacteroidetes; in an animal study, a significant
decrease in the proportion of phylum
Bacteroidetes species was observed; a
saturated fatty acid-rich diet group showed a
significantly greater decrease in Bacteroidetes
proportion (resulting in a higher Firmicutes-to-
Bacteroidetes ratio) [207]

In an animal study, fish sources rich in omega-3
fatty acids appear to bring Firmicutes-
to-Bacteroidetes ratio back into balance [208]

Omega-3 fatty acids decreased Firmicutes-
to-Bacteroidetes ratio [209]

L-Glutamine An animal study in rats suggests that glutamine
alone, but not glutamine with arginine, improves
intestinal barrier permeability that resulted from
chemotherapy [210]

After 14days of supplementation, subjects in
the glutamine group had significant differences
in the Firmicutes and Actinobacteria phyla
compared with those in the control group [211]

In vitro glutamine and arginine supplementation
improve methotrexate-induced barrier permeability
[212]

Glutamine is used by rapidly dividing epithelial
cells, enhances expression of tight junction protein
genes and production of tight junction proteins
to fortify the barrier [213]

Glutamine supplementation resulted in increased secretory IgA (SIgA) and a shift in the Firmicutes-
to-Bacteroidetes ratio to favorBacteroidetes in the ileum and increased the abundance of Streptococcus
and Bifidobacterium in the jejunum [214]
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supplementation, but not combined glutamine and arginine supplementation, improves

gut barrier function during chemotherapy-induced intestinal mucositis in rats. Clin Nutr
2013/2014;33(4):694–701. https://doi.org/10.1016/j.clnu.2013.09.003.

[213] Rao R, Samak G. Role of glutamine in protection of intestinal epithelial tight junctions.
J Epithel Biol Pharmacol 2012;5(Suppl 1-M7):47–54. https://doi.org/10.2174/18750

44301205010047.

[214] Ren W, Wang K, Yin j, Chen S, Liu G, Tan B, Yin Y. Glutamine on intestinal secretory immu-
noglobulin A secretion: a mechanistic perspective. Front Immunol 2016;7. https://doi.org/

10.3389/fimmu.2016.00503.

https://doi.org/10.1038/s41598-018-29759-y
http://refhub.elsevier.com/B978-0-12-816665-9.00004-4/rf1010
http://refhub.elsevier.com/B978-0-12-816665-9.00004-4/rf1010
http://refhub.elsevier.com/B978-0-12-816665-9.00004-4/rf1010
http://refhub.elsevier.com/B978-0-12-816665-9.00004-4/rf1010
https://doi.org/10.1007/s00394-015-0966-2
https://doi.org/10.1007/s00394-015-0966-2
https://doi.org/10.1371/journal.pone.0073571
https://doi.org/10.1038/s41598-017-10382-2
https://doi.org/10.1038/s41598-017-10382-2
https://doi.org/10.1016/j.nutres.2015.11.014
https://doi.org/10.1016/j.nutres.2015.11.014
https://doi.org/10.3390/ijms18122645
https://doi.org/10.1016/j.anaerobe.2012.02.004
https://doi.org/10.1016/j.arcmed.2014.03.008
https://doi.org/10.1186/s12944-016-0245-0
https://doi.org/10.1016/j.clnu.2013.01.014
https://doi.org/10.1016/j.nut.2015.01.004
https://doi.org/10.1016/j.clnu.2013.09.003
https://doi.org/10.2174/1875044301205010047
https://doi.org/10.2174/1875044301205010047
https://doi.org/10.3389/fimmu.2016.00503
https://doi.org/10.3389/fimmu.2016.00503


98 CHAPTER 1.4: The Gut Microbiome
Further Reading
[215] Andermann TM, Rezvani A, Bhatt AS. Microbiota manipulation with prebiotics and probio-

tics in patients undergoing stem cell transplantation. Curr Hematol Malig Rep 2016;11

(1):19–28. https://doi.org/10.1007/s11899-016-0302-9.

[216] Rothwell JA, P�erez-Jim�enez J, Neveu V, Medina-Ramon A, M’Hiri N, Garcia Lobato P, Man-

ach C, Knox K, Eisner R, Wishart D, Scalbert A. Phenol-Explorer 3.0: a major update of the

Phenol-Explorer database to incorporate data on the effects of food processing on polyphe-
nol content. Database 2013. https://doi.org/10.1093/database/bat070. [Accessed 2 August

2018].

https://doi.org/10.1007/s11899-016-0302-9
https://doi.org/10.1093/database/bat070

	The Gut Microbiome
	Introduction
	Technological Approaches to Studying the Gut Microbiome
	DNA Approaches-What Is Present?
	RNA Approaches-What Is the Functional Pathway?

	Differentiation of the Intestinal Microbiome
	Protein and Metabolite Approaches-Host Interaction and Outcome
	Broad Functions

	Microbes and Immunity
	Homeostasis Is Maintained by Two-Way Communication Between the Microbiota and Intestinal Immune System

	Microbial Diversity
	Keystone Species
	Metabolic Crossfeeding
	Suppressing Diversity Through Prescription Antibiotic Use

	Colon Health and Colorectal Cancer
	Men's Health and the Gut Microbiome
	Gut Microbiome and Testosterone
	Gut Microbiome and Prostate Health
	Cardiovascular Health

	Dietary Influence
	Probiotic Foods
	Probiotic Supplements
	Prebiotics
	Fiber Variety and Diversity
	Phenolic Compounds From Diet and Diversity


	Additional Beneficial Nutrients
	Conclusion
	References
	Further Reading




