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BACKGROUND & AIMS: Celiac disease (CeD) has characteristics
of an autoimmune disease, such as increased antibody levels to
tissue transglutaminase (tTG). However, assays to measure these
biomarkers in blood samples do not identify patients with suffi-
cient accuracy for diagnosis or monitoring of CeD. We aimed to
discover biomarkers of CeD derived from neoepitopes of deami-
dated gliadin peptides (DGP) and tTG fragments and to determine
if immune reactivity against these epitopes can identify patients
with CeD with mucosal healing. METHODS: We analyzed serum
samples from 90 patients with biopsy-proven CeD and 79
healthy individuals (controls) for immune reactivity against the
tTG-DGP complex (discovery cohort). A fluorescent peptide
microarray platform was used to estimate the antibody-binding
intensity of each synthesized tTG-DGP epitope. We validated out
findings in 82 patients with newly diagnosed CeD and 217
controls. We tested the ability of our peptide panel to identify
patients with mucosal healing (based on the histologic analysis)
using serum samples from patients with treated and healed CeD
(n ¼ 85), patients with treated but unhealed CeD (n ¼ 81;
villous atrophy despite a adhering a gluten-free diet), patients
with untreated CeD (n ¼ 82) and disease controls (n ¼ 27),
villous atrophy without CeD), and healthy controls (n ¼ 217).
Data were analyzed using principal component analysis
FLA 5.5.0 DTD � YGAST62202_proof �
followed by machine learning and support vector machine
modeling. RESULTS: We identified 172 immunogenic epitopes
of the tTG-DGP complex. We found significantly increased im-
mune reactivity against these epitopes vs controls. In the
training cohort, the set of neoepitopes derived from the tTG-DGP
complex identified patients with CeD with 99% sensitivity and
100% specificity. Serum samples from patients with untreated
CeD had the greatest mean antibody-binding intensity against
the tTG-DGP complex (32.5 ± 16.4). The average antibody-
binding intensity was significantly higher in serum from pa-
tients with treated but unhealed CeD mucosa (15.1 ± 7.5) than
in patients with treated and healed CeD mucosa (5.5 ± 3.4) (P <
.001). The assay identified patients with mucosa healing status
with 84% sensitivity and 95% specificity. CONCLUSIONS: We
identified immunogenic epitopes of the tTG-DGP complex, and
found that an assay to measure the immune response to epi-
topes accurately identified patients with CeD, as well as patients
with mucosal healing. This biomarker assay might be used in
detection and monitoring of patients with CeD.
Keywords: Noninvasive Marker; Diagnostic; Follow-up;
Response to Treatment.
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eliac disease (CeD) has the features of an autoim-
Abbreviations used in this paper: CeD, celiac disease; DGP, deamidated
gliadin-derived peptide; Fmoc, fluorenylmethoxycarbonyl; GFD, gluten-
free diet; GP, gliadin peptide; IgA, immunoglobulin A; ROC, receiver
operating characteristic; tTG, tissue transglutaminase.
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Cmune disease, such as increased antibody levels to
the self-antigen tissue transglutaminase (tTG) that return to
normal when adhering to a gluten-free diet (GFD).1 The
adaptive response of CeD consists of T-cell– and B-cell–
mediated responses to gliadins and similar proteins in
wheat, barley, and rye.2,3 Currently, the primary serologic
markers of CeD are antibodies to tTG and gliadin peptides
(GPs) that have been deamidated by tTG.4,5 Autoimmunity
(characterized by anti-tTG antibodies) is uniquely depen-
dent on the continued ingestion of gluten.6–8 Several studies
showed that deamidated gliadin-derived peptides (DGPs)
that have been modified by tTG are more immunogenic in
patients with CeD than native GPs, which have not been
modified by tTG.9,10 Furthermore, Sollid et al.11 proposed
the hapten-carrier theory to explain autoimmunity initiation
in patients with CeD. Compatible with this theory, a complex
consisting of small parts of DGPs and tTG may elicit or
augment an immune response in CeD. Furthermore, neo-
epitopes from the tTG-DGP complex were suggested as ac-
curate diagnostic markers of CeD.12,13 However, this
association between tTG and DGPs has not been fully
established.

Serologic tests have shown high sensitivity and speci-
ficity for diagnosing untreated CeD, especially tests for tTG–
immunoglobulin A (tTG-IgA), but less so for DGP-IgA and
DGP–immunoglobulin G, but upper endoscopy with biopsy
of the duodenum is required to confirm diagnosis because of
variability in CeD serology.1 Moreover, a reference tTG-IgA
level after starting a GFD is a poor predictor of intestinal
healing.14 The only accurate method for verifying intestinal
healing is to histologically evaluate a biopsy of the duo-
denum, which is invasive and expensive. Previously, we
FLA 5.5.0 DTD � YGAST62202_proof �
developed an ultrahigh-density protein and peptide array
that enables comprehensive interrogation of the antibody
responses to native peptides, DGPs, and tTG.3 Thus, in this
study we aimed to explore epitope recognition in serum
samples from patients with untreated CeD, in particular
immune recognition of novel combinations of tTG and DGPs,
and to further determine whether the antibody recognition
patterns of these peptides are predictive of mucosal healing
in patients with treated CeD.
Methods
This analysis is composed of 2 case-control studies. The

first study aimed to identify a potential biomarker derived from
novel combinations of tTG and DGPs for diagnosing CeD. The
second study further evaluated the biomarker identified in the
first study to differentiate healing status in patients with CeD
who were adhering to a GFD. Our study was approved by the
Institutional Review Board of Mayo Clinic in Rochester,
Minnesota.

Study Population
Cohorts for identifying diagnostic markers

(Supplementary Tables 1 and 2). To discover potential
biomarkers for CeD, 90 patients with biopsy-proven CeD and
79 healthy control patients comprised the exploratory popu-
lation, from which serum samples were collected in our pre-
vious study.3 Another cohort of 82 patients with newly
diagnosed CeD and 217 control patients whose serum samples
were prospectively collected was used as the validation cohort
to verify the diagnostic utility of the biomarker discovered in
the first exploratory cohort. Among 82 patients with newly
diagnosed CeD in the validation set, 4 patients with IgA defi-
ciency were included.

Cohorts for disease monitoring. To evaluate the
identified biomarker for predicting mucosal healing status in
patients with treated CeD, serum samples were prospectively
collected from patients with treated and healed CeD mucosa
(n ¼ 85), patients with treated but unhealed CeD mucosa (n ¼
81), patients with untreated CeD mucosa (n ¼ 82), and control
patients (n ¼ 217). Mucosal healing status was defined by
persistent villous atrophy despite adhering to a GFD or histo-
logic recovery (no villous atrophy). Patients with refractory
CeD were not included in this study. The mucosal healing status
in the small intestine was classified based on the pathologic
reports; treated patients with CeD who had partial or total
villous atrophy were categorized into treated but unhealed CeD
group.

Controls with villous atrophy but no CeD (disease
controls). To compare the immune reactivity against epi-
topes of DGP, tTG, and tTG-DGP complex, we also tested serum
samples of selected disease controls who were diagnosed with
autoimmune enteropathy (n ¼ 10), common variable immune
27 December 2018 � 1:31 pm � ce
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deficiency associated enteropathy (n ¼ 6), or drug-induced
spruelike enteropathy (n ¼ 11).

Peptide Synthesis
The peptide array was described in our previous study.3

Briefly, for solid-phase peptide synthesis, silicon-based wafers
(300-mm diameter), with a 100-nm-tall, thermal oxide–coated
feature area and nonfeature area containing silicon, were made
using photolithography and an inductively coupled plasma deep-
etching technique. The surface of the prepared silicon-based
wafer contained a monolayer of aminosilane that provided
peptide attachment sites, in which peptide synthesis was per-
formed using standard fluorenylmethoxycarbonyl (Fmoc)
chemistry. After Fmoc protection was removed, the unprotected
amine was coupled with the incoming desired Fmoc amino acid
using a specific reticle that activates only the desired site where
the incoming amino acid needs to be coupled. The process was
repeated for each individual layer of amino acids to create the
desired peptide sequences at each feature area.

tTG and the tTG-DGP Complex
In the previous study,3 12-mer peptides, with sequences

from a lateral shift of 2 amino acids in a, b, g, and U fractions of
gliadin, were synthesized on silicon-based wafers. In addition,
in these synthetic GPs, each glutamic acid was replaced in the
position of glutamine, mimicking the deamidation of GPs
(DGPs). The peptide microarray immunoassay was used to
assess native peptides, DGPs, and key 3-mer GP sequences with
high antibody-binding intensity associated with CeD.3 Similar to
GPs, overlapping 12-mer peptides and various lengths of tTG
were synthesized. For the main purpose of this study, novel
combined sequences, which were combinations of key 3-mer
GP sequences and tTG subsequences, were synthesized on the
silicon-based wafers. For example, in the new combined
sequence YGDGVSQPEQPF, YGDGVS is from tTG (positions
245–250) and QPE and QPF are key 3-mer GP sequences. The
basic method for selecting the new combined tTG-DGP se-
quences is shown in Figure 1.

Statistical Analysis
A fluorescent peptide microarray platform (Vibrant

Sciences, San Carlos, CA) was used to estimate the antibody-
binding intensity of each synthesized tTG-DGP neoepitope.
Figure 1. Combined epitopes of the tTG-DGP complex. Exam
YGDGVS is located at positions 245 to 250 of the tTG peptide
Upper row, YGDGVS is followed by PEQ and PEP. Middle row,
and PEQP are followed by YGDGVS. E indicates glutamic acid;
P, Proline; F, Phenylalanine; S, Serine.

FLA 5.5.0 DTD � YGAST62202_proof �
The region of interest stitching program using JAVA trans-
formed an image file from the scan of a peptide microarray chip
to individual antibody-binding intensity values, which were
calculated using the median foreground intensity and then
applying binary log transformation to stabilize variance. Each
antibody-binding intensity value is linked to a corresponding
peptide sequence. A random forest was used to remove the
unreliable peptide sequences of the tTG-DGP complex.15 A
random forest classifier was trained to detect areas of peptide
sequences with values that were not within the 95% linear
regression confidence band of a single linear regression anal-
ysis of multiple assays (performed using the rapmad [Robust
Analysis of Peptide MicroArray Data] R-package).16 Further-
more, background normalization modeling was also applied,
which was performed using an expectation-maximization al-
gorithm (performed using R-package) that placed blank spots
where no sequences were synthesized. After eliminating
background noise and unreliable peptide sequences, support
vector machine modeling17 was applied to the training set to
construct a hyperplane and maximize the margins of the
training data between the 2 classes (CeD vs no CeD) (per-
formed using the Python package), with the aim of identifying
the disease-associated peptide sequences of the tTG-DGP
complex. Based on results of the support vector machine
training, the identified disease-associated peptide sequences
were then tested on unknown samples to compute the pre-
diction accuracy, sensitivity, and specificity. Further receiver
operating characteristic (ROC) curve analysis was performed to
determine the sensitivity and specificity of each peptide. The
threshold value for the ROC curve of each peptide was deter-
mined by choosing the value with the highest sensitivity and
specificity. Furthermore, principal component analysis, hierar-
chical cluster analysis with heat maps, and random forest
multivariate analysis were performed using the R or Python
package.18

Results
Diagnostic Accuracy of the tTG-DGP Complex

The synthesized tTG peptide fragments were tested in
serum samples obtained from 90 patients with CeD and 79
control patients to determine immune reactivity against tTG
fragments. Interestingly, immune reactivity against the tTG
fragments was not significantly increased in patients with
ples of 3 different ways to combine tTG and GP segments.
, and PEQ and PEP are 2 key 3-mer amino acids of gliadin.
YGDGVS is located between PEQ and PEP. Lower row, PEQ
Q, glutamine; Y, Tyrosine; D, Aspartate; G, Glycine; V, Valine;
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Figure 2. Heat maps showing immune reactivity against tTG and the tTG-DGP. (A) Immune reactivity against the tTG peptide.
No significant differences in immune reactivity were found between the serum samples from patients with CeD and control
patients. (B) Immune reactivity against the neoepitopes of the tTG-DGP complex. The antibody-binding intensity of the
neoepitopes of the tTG-DGP complex was significantly increased in the serum samples of the patients with celiac disease, but
immune reactivity was minimal or nearly 0 in controls.
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CeD compared with control patients (Figure 2A). Because
GPs can form complexes with tTG in the duodenal mucosa of
patients with CeD,19 it is plausible that an adaptive immune
response against the tTG-DGP complex would be generated.
Thus, we synthesized 12-mer neoepitopes derived from tTG
and key 3-mer motifs of native peptides or DGPs. These
neoepitopes were tested in the serum samples of patients
with CeD and control patients to identify immunogenic
epitopes, which were defined as any sequence with an area
under the ROC curve value >0.7. Finally, a total of 172
immunogenic epitopes of the tTG-DGP complex were iden-
tified (Supplementary Table 3). Figure 2B shows signifi-
cantly increased immune reactivity against the neoepitopes
of the tTG-DGP complex in patients with CeD compared with
control patients. In the training cohort, the identified set of
neoepitopes derived from the tTG-DGP complex showed
very high sensitivity (99%) and specificity (100%) for
diagnosing CeD. To validate the discriminative power of this
tTG-DGP complex set, serum samples from a validation
cohort of 82 patients with CeD and 217 control patients
were assayed in a blind test. Encouragingly, this tTG-DGP
complex set showed high accuracy for distinguishing CeD
cases from controls, achieving 99% sensitivity and 100%
specificity. In particular, compared with current serologic
Table 1.Sensitivity, Specificity, and Overall Accuracy of Using

Peptide/Protein Sensitivity % (95% CI) Specificity % (

tTG-DGP complex 99 (93–100) 100 (98–1
tTG-IgAa 90 (82–95) 99 (96–1
DGP IgA (ELISA)a 91 (83–96) 97 (94–9

ELISA, enzyme-linked immunosorbent assay; NPV, negative pr
aDetermined using the tTG-IgA or DGP-IgA ELISA test (Inova D

FLA 5.5.0 DTD � YGAST62202_proof �
tests for CeD, including tTG-IgA and DGP-IgA, sensitivity and
specificity were higher when using these neoepitopes to
differentiate CeD cases from controls (Table 1). Serum
samples from patients diagnosed with selected control dis-
eases in which enteropathy is present in the absence of CeD,
also were tested. The control disease patients consisted of
10 patients with autoimmune enteropathy, 6 patients with
common variable immunodeficiency–associated enteropa-
thy, and 11 patients with drug-induced enteropathy. We
found that the immune reactivity against neoepitopes of
tTG-DGP complex in these disease controls was significantly
lower than in patients with CeD and was similar to other
control patients. Of interest was that 4 patients with CeD
with complete IgA deficiency had no immune reactivity
against neoepitopes of tTG-DGP complex.
tTG-DGP Complex and Disease Activity in
Patients With Treated CeD Mucosa

Table 2 shows the characteristics of treated patients
with CeD according to mucosal healing status. Patients with
treated and healed CeD mucosa were younger on average
than patients with treated but unhealed CeD mucosa, but
similar with regard to sex (73% vs 72% of patients were
the tTG-DGP Complex to Diagnose CeD

95% CI) Overall Accuracy % (95% CI) PPV NPV

00) 99 (98–100) 1 0.99
00) 97 (94–98) 0.97 0.96
8) 97 (94–98) 0.96 0.97

edictive value; PPV, positive predictive value.
iagnostics, San Diego, CA).

27 December 2018 � 1:31 pm � ce
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Table 2.Characteristics of the Patients With Treated CeD According to Mucosa Healing Status

Characteristic
Treated/healed CeD
mucosa (n ¼ 85)

Treated/unhealed CeD
mucosa (n ¼ 81) P

Age at diagnosis, mean (SD), y 41.1 (15.2) 47.5 (15.5) <.001
Female sex, % 73 72 .60
Duration of gluten-free diet, median (IQR), y 2.8 (1.7–5.1) 3.5 (1.8–8.1) .16a

tTG-IgA positivity, % 7 27 <.001
DGP-IgA positivity, % 9 48 <.001
Partial or total villous atrophy, % 0 100 <.001

SD, standard deviation.
aDetermined using nonparametric tests.
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women, respectively). Interestingly, patients with treated
but unhealed CeD mucosa adhered to a GFD longer than
patients with treated and healed CeD, but this was not
statistically significant (P ¼ .16). Although 7% of patients
with treated and healed CeD mucosa were positive for tTG-
IgA, 27% of patients with treated but unhealed CeD mucosa
were positive for tTG-IgA, and approximately three-quarters
of patients with treated but unhealed CeD mucosa were
negative. In addition, 48% of patients with treated but un-
healed CeD mucosa were positive for DGP-IgA and 9% of
patients with treated but healed CeD mucosa were positive
for DGP-IgA.

Figure 3 shows immune reactivity against the neo-
epitopes of the tTG-DGP complex in patients with treated
CeD according to healing status. Overall, as shown in the
heat map, immune reactivity against the neoepitopes of the
DGP-tTG complex was stronger in patients with treated but
unhealed CeD mucosa than patients with treated and healed
CeD mucosa and control patients (Figure 3A). Interestingly,
the average antibody-binding intensity of the neoepitopes
derived from the tTG-DGP complex significantly differed
among the 5 groups (P < .001). Immune reactivity
decreased stepwise according to intestinal mucosal damage
status, showing the highest mean (standard deviation)
reactivity in the patients with untreated CeD mucosa (32.5
[16.4]) followed by patients with treated but unhealed CeD
mucosa (15.1 [7.5]), patients with treated and healed CeD
mucosa (5.5 [3.4]), control patients (1.3 [0.5]), and disease
controls (1.3 [0.4]). Furthermore, in the principal compo-
nent analysis (Figure 3B), the patients with treated and
healed CeD mucosa and control patients were closely
aggregated, but the patients with treated and unhealed CeD
mucosa and patients with untreated CeD mucosa were
similarly distributed.

Figure 4 shows the potential utility of the neoepitopes of
the tTG-DGP complex to diagnose treated but unhealed CeD
mucosa compared with the tTG-IgA enzyme-linked immu-
nosorbent assay. Although approximately 75% of patients
with treated but unhealed CeD tested negative for tTG-IgA,
most of these patients showed increased immune reac-
tivity against the neoepitopes of the tTG-DGP complex.
Compared with the tTG-IgA enzyme-linked immunosorbent
assay, the neoepitopes of the tTG-DGP complex showed
higher sensitivity (84%) and specificity (95%) with a
FLA 5.5.0 DTD � YGAST62202_proof �
positive predictive value of 0.94 and a negative predictive
value of 0.86 for predicting healing status in patients with
treated CeD mucosa (Table 3).
Discussion
Serologic tests for CeD, especially tTG-IgA tests, have

high sensitivity and specificity, but biopsy of the small in-
testines is still considered the definitive method for diag-
nosing CeD. In addition, no useful noninvasive markers exist
for monitoring disease activity in patients with CeD who
have started a GFD. In this study, we found potential bio-
markers for CeD, synthesized neoepitopes derived from DGP
and tTG fragments, that show better diagnostic accuracy
than current serologic tests for distinguishing patients with
CeD from controls. Intriguingly, these neoepitopes showed
more significant reactivity in the serum samples of the pa-
tients with treated but unhealed CeD mucosa compared
with the patients with treated and healed CeD mucosa or
control patients. In addition, immune reactivity against
these neoepitopes was somewhat less in patients with
treated but unhealed CeD mucosa than patients with un-
treated CeD. This distinctive increase in immune reactivity
was still prominent in patients with CeD testing negative for
tTG-IgA who have treated but unhealed mucosa.

Serologic tests for CeD have been extensively investi-
gated and are considered an effective first step in diag-
nosing CeD.5,20–25 Recent European guidelines suggested
that sufficiently and strongly positive serologic tests for
CeD, including tests for tTG-IgA and endomysial antibody,
are enough to confirm CeD; therefore, biopsy of the small
intestines may not be needed to diagnose CeD in this sub-
group.26 However, the results of serologic tests vary greatly
across different settings and populations,5,22,24,25 and most
guidelines still recommend intestinal biopsy to reach the
final diagnosis of CeD.1,27,28 Especially the positive predic-
tive values of CeD serologic tests are relatively low because
of the low prevalence of CeD. In addition, for patients with
selective IgA deficiency that is more commonly associated
with CeD than in the general population, the tTG-IgA test
was not effective to diagnose CeD. All 4 patients with se-
lective IgA deficiency were negative for tTG-IgA but showed
increased immune reactivity against the neoepitopes of the
tTG-DGP complex. Furthermore, patients who had intestinal
27 December 2018 � 1:31 pm � ce
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Figure 3. Immune reactivity against epitopes of the tTG-DGP complex based on antibody-binding intensity. (A) Immune
reactivity against epitopes of the tTG-DGP complex in patients with CeD and control patients shows higher antibody-binding
intensity in patients with untreated CeD and patients with treated and unhealed CeD; but low antibody-binding intensity in
patients with treated and healed CeD, healthy controls, and disease controls who had villous atrophy due to autoimmune
enteropathy, common variable immunodeficiency–associated enteropathy, or drug-induced enteropathy. (B) Principal
component analysis of immune reactivity against neoepitopes of the tTG-DGP complex. Biplot illustrates the correlation
between the level of immune reactivity against the tTG-DGP complex and CeD phenotype. Treated/healed CeD group (red
dots) and healthy controls (blue dots) appear together on the principal component analysis plot. In the figure, CD indicates
celiac disease.
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villous atrophy but no CeD showed no immune reactivity
against the neoepitopes of tTG-DGP complex. In the present
study, the neoepitopes of the tTG-DGP complex showed
comparable or even higher diagnostic accuracy for
discriminating CeD than clinically available serologic tests.
Indeed, several studies show that gliadin directly binds to
tTG in the duodenal mucosa of patients with CeD, and the
cross-linking of GPs by tTG has been suggested to be
involved in the development of CeD.12,19,29 Interestingly, we
found that immune reactivity against linear epitopes of tTG
was not increased in patients with CeD, suggesting that the
linear epitopes of tTG may not be recognized in the sera of
CeD patients. The formation of the tTG-GP complex could be
an important step in the development of autoimmunity in
FLA 5.5.0 DTD � YGAST62202_proof �
persons with CeD, indicating epitope spread from gliadin to
tTG, but the reason for the development of autoimmunity
against tTG in patients with CeD is unknown.30 In addition,
few studies have tested using cross-linked tTG and GPs as
biomarkers for CeD, even though diagnostic accuracy was
low in these studies compared with our study.30–32

Although a GFD is an effective therapy for CeD, patients
with CeD frequently find it difficult to adhere to a GFD,
resulting in ongoing intestinal damage. Several studies have
shown that persistent mucosal damage in patients with
treated CeD mucosa was associated with several severe
complications, including lymphoproliferative malignancy,
bone diseases,33,34 and possibly excess mortality.35,36

Similar to other chronic conditions, disease monitoring in
27 December 2018 � 1:31 pm � ce
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Figure 4. Antibody-binding levels of tTG-IgA vs tissue transglutaminase–derived gliadin peptide complex in patients with
treated but unhealed CeD. For most patients, the levels of tTG-IgA are low but the neoepitopes to tTG-DGP complex exhibit
higher antibody-binding levels. Patients with high tTG-IgA, which was depicted by red check box, showed higher antibody-
binding levels of neoepitopes of tTG-DGP complex. The box plot indicates the antibody-binding levels to neoepitopes of
tTG-DGP complex; the horizontal line of the box indicates patients with treated but unhealed CeD mucosa. The red check box
depicts the titers of tTG-IgA.
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patients with treated CeD mucosa is necessary. Follow-up
biopsy of the duodenum is considered the gold standard
of care for treated CeD, although it is both invasive and
expensive. Although several serologic tests for CeD are also
recommended for monitoring CeD,27,37–39 the results of
these serologic tests are not well correlated with intestinal
mucosal healing status in patients with treated CeD.40,41 A
recent meta-analysis reported that serologic tests for CeD,
including tests for tTG-IgA and endomysial antibody, have
low sensitivity (less than 50%) compared with follow-up
biopsy for detecting persistent villous atrophy in patients
with CeD who adhere to a GFD, indicating the need for more
accurate noninvasive markers for monitoring CeD.
Compared with tTG-IgA, DGP-IgA has been shown to be a
better predictor of healing status in patients with treated
CeD; however, the sensitivity and specificity of DGP-IgA
were not optimal in our study. We tested the identified
neoepitopes of the tTG-DGP complex to determine whether
these neoepitopes predict persistent mucosal damage in
patients with treated CeD and found much higher sensitivity
and specificity for predicting healing status in patients with
treated CeD compared with current serologic tests in our
study. In particular, immune reactivity against the neo-
epitopes of the tTG-DGP complex was still high in patients
with treated but unhealed CeD whose tTG-IgA titers were
normalized. Thus, these neoepitopes could be good
Table 3.Sensitivity, Specificity, and Overall Accuracy of Using t
Status in Patients With Treated CeD

Peptide/Protein Sensitivity % (95% CI) Specificity % (

tTG-DGP complex 84 (74–90) 95 (88–9
tTG-IgAa 27 (19–38) 93 (85–9
DGP-IgAa 48 (38–59) 91 (83–9

NPV, negative predictive value; PPV, positive predictive value.
aDetermined using the tTG-IgA or DGP-IgA enzyme-linked imm

FLA 5.5.0 DTD � YGAST62202_proof �
biomarkers for determining healing status in patients with
treated CeD mucosa. Immune reactivity against the neo-
epitopes of the tTG-DGP complex cannot take the place of
the necessity of intestinal biopsies when monitoring disease
activity because a small portion of patients with CeD can
progress to lymphoproliferative disorders or type II re-
fractory CeD, which are associated with aberrant T lym-
phocytes; however, increased immune reactivity may give
clues for ongoing inflammation with persistent intestinal
damage. Thus, with such a good positive predictive value
(94%) to predict unhealed mucosa, this new test would
provide the possibility of avoiding intestinal biopsies if the
treated patient still shows the increased immune reactivity
against neoepitopes of tTG-DGP complex. Furthermore,
because the negative predictive value of the new test (86%)
was high, if negative, a need for biopsy in patients with
treated CeD may be obviated.

The mechanism that results in persistent immune reac-
tivity against the neoepitopes of the tTG-DGP complex in
patients with CeD who are adhering to a GFD and have
mucosal atrophy is unclear, especially in patients whose
tTG-IgA titers were already normalized. Because persistent
intestinal villous atrophy is more commonly associated with
poor adherence to a GFD in patients with treated CeD
mucosa,35,42 even a small amount of gluten can maintain the
immune response in a person adhering to a GFD. In our
TG-DGP Complex, tTG-IgA, and DGP-IgA to Predict Healing

95% CI) Overall Accuracy % (95% CI) PPV NPV

8) 90 (84–94) 0.94 0.86
7) 61 (53–68) 0.78 0.57
5) 70 (63–76) 0.83 0.64

unosorbent assay (Inova Diagnostics, San Diego, CA).
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study, some treated patients were still positive for tTG-IgA,
and, interestingly, these patients showed much higher im-
mune reactivity against neoepitopes of tTG-DGP complex
than patients with negative tTG-IgA. Several studies have
also demonstrated the persistence of DGP-IgA in patients
with CeD who adhered to strict GFD for at least 1 year.43–46

Furthermore, Spatola et al45 recently showed that the
persistence of antibodies against DGP was associated with
nonresponsive CeD in patients with treated CeD, even
though the sample size of nonresponsive CeD cases was
small. As with other autoimmune diseases,47–51 epitope
spreading may occur in patients with CeD, especially from
GPs to tTG. As exposure to the evoking antigens declines in
patients with CeD, immunity against self- and non–self-an-
tigens also disappears in a reverse manner. Thus, it is
conceivable that immune reactivity against the tTG-DGP
complex is highly correlated with mucosal healing in pa-
tients with treated CeD mucosa.

Our study has limitations. First, GPs were not deami-
dated by tTG in a biologic process; rather, these peptides
were synthesized using all possible substitutions of specific
glutamine residues. Second, we did not determine any
experimental 3-dimensional structures of the tTG-DGP
complex. However, in this study, the synthesized neo-
epitopes of the tTG-DGP complex were short (confined to
approximately 12 amino acid residues) and mimicked
antibody recognition of DGPs and tTG (ie, the antibodies
needed to detect only a single patch on the key binding
residues).52,53 Furthermore, the synthesized peptides on the
microarray adapted to the 3-dimensional conformational
requirements for reactions between antibodies and epi-
topes.53 Thus, it is conceivable that the synthesized neo-
epitopes of the tTG-DGP complex had the specific key
binding residues that evoked the immune responses by the
antibodies formed in patients with CeD. In addition, patients
with treated but unhealed mucosa can be related to gluten
exposure so that immune response to exposed gluten may
be still persisted in these patients.

In conclusion, the neoepitopes derived from the tTG-DGP
complex are extremely accurate predictors of untreated CeD
mucosa, and persistent immune response to these epitopes is
a promising noninvasive predictor of persistent mucosal
injury in patients with treated CeD. These data also suggest
that, unlike antibodies to tTG, these antibodies persist long
after treatment in patients with CeDwith nonhealingmucosa.
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Supplementary Table 3.List of tTG–DGP Complex Sequences Showing High Sensitivity and Specificity for Identifying CeD in
Healthy Control Patients With Area Under the Curve > 0.7

FEDGILEQPPEQ, PFPQKTVEIPEQ, FPLRDAPEQQPE, FPQQPFWLTEQP, FDVFAHPFPFPQ, AWCPADFPEEQP, FPEPAPSQEQPF,
AEVSLQEQPPEQ, EMIWNFPFPEQP, EQPPEQAEVSLQ, FPEQPEYGDGVS, PFPPEQALLVEP, HDQNSNQPFQPE, PFPSVDILRQPE,
EQPLTQQGFEQP, FPEFPEVVNFES, QPFQPEYNSAHD, DLCREKPEQEQP, EKLVVRPEQQPE, FPQPGYEGWEQP, QPEQPEYQGSSF,
PFPNRSLIVQPF, DCTLSLPEQQPE, PFPSVDSLTFPE, DAVEEGQPEPEQ, ASTGYQQPEPFP, FEGRNYFPEFPQ, EQPLQNPLPQPF,
GWQALDFPQPFP, PEQRKLVAEFPE, QPEPVPVRAFPQ, PFPQPFVFAEVN, QPFLAERDLFPE, PEQPEQVDQQDC, EQPSGMVNCEQP,
FPELCARTVPFP, PFPLLFNAWPFP, HLNKLAPEQQPE, EQPNAPIGLPFP, FPEREAFTREQP, FPQPFPAAVACT, QPFPEQYCCGPV,
EQPQSMNMGPFP, CRLLLCPEQPEQ, IPTRVVFPEEQP, QPFLHMGLHQPE, PFPLSLEASQPE, FPQNGRDHHQPF, QPENNTAEEFPE,
PFPLDPTPQQPF, AHITNNEQPEQP, FPQKVRMDLQPF, FPEMGSDFDQPF, PEQKSVGRDQPE, IKVRALPFPPEQ, FPENFHCWVPEQ,
GRVVSGFPQQPF, QPEPFPASTGYQ, AAVACTFPQPFP, PFPPEQWMTRPD, PEQEQPWVESWM, QPEPVYVGRFPE, PEQNYEASVQPF,
EQPQPFVVDWIQ, QPEQPEYPEGSS, PFPPKQKRKQPF, QPFNFGQFEEQP, QPEQPFVNADVV, ALLVEPPFPPEQ, EGDLSTQPFQPF,
PEQNCNDDQQPF, PFPTRANHLPEQ, DQGVLLPEQQPE, GPECGTFPQQPF, FPQLVLERCQPF, QPFEQPVVTNYN, GLYRLSQPFEQP,
ADAVYLPEQQPF, FPQSEGTYCQPE, FPQSNLLIEPEQ, ENPEIKFPQPFP, QPFQEYVLTFPQ, QPFSWIGSVFPQ, EDITHTEQPQPF,
CQRVKYQPEPEQ, EIPDPVFPQQPE, EGAGLTQPEPEQ, QPESFVLGHPEQ, PEQKNHGCQEQP, PFPPQEKSEEQP, QPFPVEAGEFPE,
EQPMAEELVFPE, IKIRILPFPPEQ, ILDICLPFPFPQ, FPELTLHFEFPE, DLYLENQPFPEQ, HTYKYPPFPFPQ, EQPFPEVIIGPA,
DGSVHKFPEPFP, FPQLEGCTFFPE, QPERCDLELQPF, QPETKARFPQPE, FPQRNEFGEFPE, CWVFAAFPQQPE, FPELAEKEEQPE,
QPFPFPWDNNYG, FPQRRSSPVFPE, ESNLIKPEQQPF, DLLPLHEQPFPE, DCLTESQPFPEQ, GHFILLPEQQPE, FSEKSVFPEQPE,
QPEEQPTVSYNG, GEEVKVPEQPEQ, EPVINSQPEPEQ, EEERQEEQPQPF, HHTADLQPEQPE, GTKYLLPFPFPE, EQPTFTVEGPFP,
GEIQGDQPEQPF, PFPLPVALEFPE, CILYEKEQPFPE, QPFPKFLKNQPE, FPQLTFSVVPEQ, PFPEQPVVTGPA, EKYRDCFPEPEQ,
PFPTATVVDQPE, PFPLDVNPKQPF, FPQQGSAKFQPE, PFPRDEREDQPF, EQPEQPVRRGQP, PFPSVPLCIQPE, ILGEPKQPFQPE,
FPQPFPVSPMSW, QPELHKLVVQPE, GFIYQGFPQPFP, EQPEQPAHITNN, EEYVCRFPEPFP, PEQPDLQPGQPE, QPFFPQTTPANA,
EQPLTEEQKQPE, ESDKLKQPFPEQ, EQPNGILGPEQP, PFPQEAGTKFPQ, EETGMAPFPEQP, PFPMAMRIRQPF, QPELLGRWDQPE,
DAPFVFQPFQPF, IEYFRNEQPFPE, QPESTKYDAQPF, CLILLDQPEPFP, FPERCLGIPEQP, EQPNIPWNFPFP, GDKSEMPEQFPE,
PFPFPQYLDSEE, FPENSYLLAPEQ, EQPRAIKEGQPF, CTVLRCFPQEQP, PEQKYGQCWFPQ, EGDWTAPEQEQP, PEQQPFADAVYL,
PFPLKAVKGEQP, EQPSSEEREPFP, EQPRDCSRRPEQ, EQPNVIIGPFPE, PEQLLNLNLPEQ, EQPSLQLTTFPE, PEQNLEPFSQPF,
HKSINRFPEEQP, EQPLRRWKNPEQ, PFPKNAGRDEQP, ELETNGPFPQPF

Supplementary Table 1.Clinical Characteristics of the
Exploratory PopulationQ4

Group N

Age, y Sex, %

Mean Range Male Female

Celiac disease 90 39.4 19.5–60.2 43 57
Healthy controls 79 40.2 19.7–63.3 48 52

Supplementary Table 2.Clinical Characteristics of the
Validation Population

Group n

Age, y Sex, %

Mean Range Male Female

Celiac disease 82 47.7 34.0–59.0 28.0 72.0
Healthy controls 217 35.6 26.6–44.6 40.1 59.9
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